CONCOURS D'ADMISSION 2001

Option économique

MATHÉMATIQUES

Mardi 24 avril 2001 de 8 h 00 à 12 h 00

Durée: 4 heures

Aucun instrument de calcul n'est autorisé. Aucun document n'est autorisé.

L'énoncé comporte 5 pages.

Les candidats sont invités à soigner la présentation de leur copie, à mettre en évidence les principaux résultats, à respecter les notations de l'énoncé, et à donner des démonstrations complètes (mais brèves) de leurs affirmations.

1. EXERCICE.

Dans cet exercice on étudie l'évolution au cours du temps d'un titre dans une bourse de valeurs.

1.1. Le but de la première partie est de calculer les puissances successives de la matrice :

$$M(a)=\left(egin{array}{cccc} 1-2a & a & a \ a & 1-2a & a \ a & a & 1-2a \end{array}
ight)$$

où a représente un nombre réel.

- 1. Montrer que, pour tous réels a, b, on a: M(a).M(b) = M(a+b-3ab)
- 2. En déduire les valeurs de a pour lesquelles la matrice M(a) est inversible et exprimer son inverse.
- 3. Justifier le fait que M(a) est diagonalisable.
- 4. Déterminer le réel a_0 non nul, tel que :

$$\left[M(a_0)\right]^2 = M(a_0)$$

5. On considère les matrices:

$$P = M(a_0)$$
 et $Q = I - P$

où I désigne la matrice carrée unité d'ordre 3.

a. Montrer qu'il existe un réel α , que l'on exprimera en fonction de a, tel que :

$$M(a) = P + \alpha Q$$

- b. Calculer P^2 , QP, PQ, Q^2 .
- c. Pour tout entier naturel n, non nul, montrer que $[M(a)]^n$ s'écrit comme combinaison linéaire de P et Q.
- d. Expliciter alors la matrice $[M(a)]^n$.

1.2. Evolution d'un titre boursier au cours du temps.

Dans la suite de l'exercice, on suppose que $a \in \left]0, \frac{2}{3}\right[$

1. On définit des suites $(p_n)_{n\in\mathbb{N}^*}$, $(q_n)_{n\in\mathbb{N}^*}$, $(r_n)_{n\in\mathbb{N}^*}$, par leur premier terme p_1, q_1, r_1 , et les relations de récurrence :

$$\begin{cases} p_{n+1} = (1-2a)p_n + aq_n + ar_n \\ q_{n+1} = ap_n + (1-2a)q_n + ar_n \\ r_{n+1} = ap_n + aq_n + (1-2a)r_n \end{cases}$$

- a. Exprimer p_n, q_n, r_n en fonction de n, p_1, q_1, r_1
- b. Etudier la convergence de ces suites.
- 2. Dans une bourse de valeurs, un titre donné peut monter, rester stable, ou baisser. Dans un modèle mathématique, on considère que :
 - le premier jour le titre est stable.
 - si un jour n, le titre monte, le jour n+1, il montera avec la probabilité $\frac{2}{3}$, restera stable avec la probabilité $\frac{1}{6}$, et baissera avec la probabilité $\frac{1}{6}$.
 - si un jour n, le titre est stable, le jour n+1, il montera avec la probabilité $\frac{1}{6}$, restera stable avec la probabilité $\frac{2}{3}$, et baissera avec la probabilité $\frac{1}{6}$.
 - si un jour n, le titre baisse, le jour n+1, il montera avec la probabilité $\frac{1}{6}$, restera stable avec la probabilité $\frac{1}{6}$, et baissera avec la probabilité $\frac{2}{3}$.

On note M_n (respectivement S_n , respectivement B_n) l'événement "le titre donné monte (respectivement reste stable, respectivement baisse) le jour n".

- a. Exprimer les probabilités de hausse, de stabilité, et de baisse au jour n+1 en fonction de ces mêmes probabilités au jour n.
- b. En déduire les probabilités de hausse, de stabilité, et de baisse au jour n.
- c. Quelles sont les limites de ces probabilités lorsque n tend vers l'infini ?

2. EXERCICE.

Un système est constitué de n composants. On suppose que les variables aléatoires T_1, T_2, \ldots, T_n mesurant le temps de bon fonctionnement de chacun des n composants sont indépendantes, de même loi, la loi exponentielle de paramètre $\lambda > 0$.

2.1. Calcul du nombre moyen de composants défaillants entre les instants 0 et t

On note N_t la variable aléatoire égale au nombre de composants défaillants entre les instants 0 et t avec $t \ge 0$.

- 1. Pour tous les entiers i de $\{1, 2, ..., n\}$, calculer la probabilité de l'événement $\{T_i < t\}$.
- 2. Montrer que N_t suit une loi binômiale. Préciser ses paramètres et son espérance $E(N_t)$.
- 3. A partir de quel instant t_o le nombre moyen de composants défaillants dépasse-t-il la moitié du nombre de composants ?

2.2. Montage en série.

On suppose que le système fonctionne correctement si tous les composants eux-mêmes fonctionnent correctement et note S_n la variable aléatoire mesurant le temps de bon fonctionnement du système.

1. Pour $t \in \mathbb{R}$, exprimer l'événement $\{S_n > t\}$ en fonction des événements :

$$\{T_1 > t\}, \{T_2 > t\}, \ldots, \{T_n > t\}$$

- 2. Déterminer alors la fonction de répartition F_n de S_n puis définir sa densité f_n .
- 3. Reconnaître la loi de S_n et donner sans calcul l'espérance $E(S_n)$ et la variance $V(S_n)$ de S_n .

2.3. Montage en parallèle.

On suppose maintenant que le système fonctionne correctement si l'un au moins des composants fonctionne correctement et note U_n la variable aléatoire mesurant le temps de bon fonctionnement du système.

- 1. Exprimer $\{U_n < t\}$ en fonction des événements $\{T_1 < t\}, \{T_2 < t\}, \dots, \{T_n < t\}$.
- 2. Déterminer alors la fonction de répartition G_n de U_n puis montrer que sa densité g_n est définie par :

$$\begin{cases} g_n(t) = n\lambda(1 - e^{-\lambda t})^{n-1}e^{-\lambda t}, & t \ge 0\\ g_n(t) = 0, & t < 0 \end{cases}$$

3. Montrer l'existence de l'espérance $E(U_n)$ de U_n et prouver que :

$$E(U_n) = \frac{1}{\lambda} \sum_{k=0}^{n-1} \frac{(-1)^k}{k+1} C_n^{k+1}$$

puis, que pour tous entiers naturels n,

$$E(U_{n+1}) - E(U_n) = \frac{1}{\lambda(n+1)}$$

4. Par sommation de la relation précédente, et en utilisant l'équivalent simple :

$$\sum_{k=1}^{n} \frac{1}{k} \underset{n \to +\infty}{\sim} \ln n$$

donner un équivalent simple de $E(U_n)$ lorsque n tend vers $+\infty$.

3. EXERCICE.

On désigne par n un entier naturel non nul et a un réel strictement positif. On se propose d'étudier les racines de l'équation :

$$(E_n): \frac{1}{x} + \frac{1}{x+1} + \frac{1}{x+2} + \dots + \frac{1}{x+2n} = a$$

À cet effet, on introduit la fonction f_n de la variable réelle x définie par :

$$f_n(x) = \frac{1}{x} + \frac{1}{x+1} + \frac{1}{x+2} + \dots + \frac{1}{x+2n} - a$$

3.1. Etude d'un cas particulier

Pour cette question seulement, on prend $a = \frac{11}{6}$ et n = 1.

- 1. Représenter la fonction f_1 relativement à un repère orthonormal du plan. (unité graphique 2 cm)
- 2. Calculer $f_1(1)$, puis déterminer les racines de (E_1) . (On donne $\sqrt{37} = 6,08$ à 10^{-2} près par défaut)

3.2. Dénombrement des racines de (E_n)

- 1. Dresser le tableau de variations de f_n .
- 2. Justifier l'existence de racines de l'équation (E_n) et en déterminer le nombre.

3.3. Equivalent de la plus grande des racines quand n tend vers $+\infty$

On note x_n la plus grande des racines de (E_n) .

- 1. Justifier que $x_n > 0$.
- 2. Démontrer que pour tout réel x > 1:

$$\frac{1}{x} < \ln \frac{x}{x-1} < \frac{1}{x-1}$$

En déduire que pour x réel strictement positif :

$$f_n(x) - \frac{1}{x} + a < \ln(1 + \frac{2n}{x}) < f_n(x) - \frac{1}{x + 2n} + a$$

puis, que:

$$a - \frac{1}{x_n} < \ln(1 + \frac{2n}{x_n}) < a - \frac{1}{x_n + 2n}$$

3. Montrer que pour tout n entier naturel, non nul :

$$x_n > \frac{2n}{\exp a - 1}$$

- 4. Quelle est la limite de x_n , puis la limite de $\ln(1+\frac{2n}{x_n})$, lorsque n tend vers $+\infty$?
- 5. Prouver enfin l'existence d'un réel δ , que l'on exprimera en fonction de a, tel que l'on ait, au voisinage de l'infini, l'équivalent suivant :

$$x_n \underset{n \to +\infty}{\sim} \delta.n$$

Fin de l'épreuve